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The influence of the wall vibrations of a musical wind instrument on tone quality remains
an open question. In order to quantify the effects of these vibrations, a model of the
vibroacoustic behaviour of a simplified instrument (clarinet-like instrument) is proposed.
The reed, which is represented by mechanical and acoustical harmonic sources, excites a
thin cylindrical shell, filled and surrounded with air. The sound radiation due to wall
vibrations has two origins, which are decoupled in the model making use of artificial baffles.
The first one corresponds to the direct radiation of the shell in the external fluid. The second
one is created by the internal radiation of the shell, which is then radiated outside the tube,
through its open end. Three kinds of vibroacoustic couplings are involved in this situation:
structure/internal fluid, structure/external fluid and inter-modal acoustic coupling due to
sound radiation at the open end of the duct. A modal formulation of the problem is
proposed which takes into account these three couplings. Impedances describing the shifts
of the internal acoustic resonance frequencies due to the effects of the three kinds of
couplings are given and permit one to quantify the wall vibrations effect.
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1. INTRODUCTION

The question of the effect of wall vibrations on the tone of a musical wind instrument
remains open: we still do not know if this phenomenon is important for the emitted tone
or not. The aim in this paper is to quantify this effect, by making use of a model of a
simplified instrument, allowing one to understand the phenomena involved. Some papers
in the literature deal with the role of the wall material on tone. First, experimental studies
can be found. Coltman [1] showed, with blindfold tests, that flutists are unable to
distinguish several instruments, having the same internal shape and made from various
materials. Backus [2] presented some measurements of the sound pressure level, radiated
outside by the wall vibrations of a clarinet. Angster et al. [3] determined experimentally
the first structural modes of a flue organ pipe. Smith [4] gathered some results concerning
brass instruments. Lawson and Lawson [5] presented an experimental comparison between
several annealed French horn bell flares. Second, some theoretical studies have been
proposed. Backus and Hundley [6] proposed a simplified model of the acoustic resonance
frequency shifts of an air column, caused by wall vibrations. Making use of the finite
elements method, Watkinson and Bowsher [7] studied the structural modes of a trombone
and used them in order to estimate the vibratory response of the structure.

These experimental and theoretical studies encounter many difficulties: from an
experimental point of view, constructing two instruments having strictly the same internal
shape is difficult and prevents one’s making convincing comparisons. Indeed, the wall
vibrations effect, which seems to be particularly small, can be masked by a lot of parasitic
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phenomena. From a theoretical point of view, the complexity of the phenomena involved
leads to approximate methods. The limitations of the simplified models used, which are
rather difficult to estimate, do not allow one to draw firm conclusions. In this paper, in
order to quantify the wall vibrations effect, a theoretical approach is proposed which takes
into account three kinds of structure/fluid coupling: the internal and external radiation
couplings and the inter-modal acoustic coupling due to sound radiation from the open end
of the tube. The vibroacoustic behaviour of cylindrical shells has attracted a lot of
attention, because of its great practical importance in a wide variety of applications such
as muffler and industrial pipes acoustics. The problems, called internal problems, are
dealing with the coupling between the vibrations of an elastic cavity and the acoustic
behaviour of the contained fluid. For complex shapes, such a problem is usually solved
by numerical methods [8]. However, some analytical solutions can be given for simple
geometries by using integral methods [9–15]. First the vibratory response of the structure
is expressed as an expression over the in vacuo structural modes. Second, the coupled
acoustic field is written by making use of the Helmholtz–Huygens integral. Finally, the
momentum equation of the structure, with account taken of the fluid-loading is projected
over the structural eigenfunctions to give the governing equations of the problem. In the
case of a cylindrical shell, the internal radiation impedances, characterizing the
fluid/structure interaction, has been determined for various sets of acoustic boundary
conditions at the ends of the duct. The external fluid-loading for simple structures has
received a lot of attention [16–22] and has been calculated for a cylindrical shell with rigid
extensions [23–25].

In this paper, in order to describe the internal acoustic field inside a cylindrical cavity
with vibrating walls, two different modal expansions, involving both in vacuo structural
modes and acoustic modes of the air column bounded by rigid walls, are used to express
the coupled acoustic field, whereas the integral method would use only the second one.
It has been shown [26, 27], that in the case of a cylindrical cavity, such a method leads
to more simple expressions for the internal radiation impedances than those which are
obtained by the classical integral method. The model used here, which takes into account
the three types of couplings mentioned above, is presented in section 2. A theoretical
formulation is given in section 3, leading to numerical estimations of the wall vibrations
effect on tone (section 4).

2. MODEL OF THE MUSICAL WIND INSTRUMENT

2.1.    

A musical wind music instrument, such as a clarinet, can be considered as an acoustic
waveguide (the instrument’s body) interacting with an exciter (the energy source), and
radiating in a fluid domain (the air). Each element is complex and has to be modelled,
and for the purpose of this investigation an idealized instrument is assumed. The body of
the instrument, characterized by the internal shape (assumed to be approximately
cylindrical), the lateral holes and the keys is a very complex mechanical structure. Its
vibratory behaviour depends on its shape, the material from which it is made, the boundary
conditions and the kind of excitation. The different kinds of vibroacoustic coupling
occurring between this complex structure and the fluid are schematically depicted in
Figure 1.

The reed vibrations provide energy to the internal air column and create the internal
acoustic pressure field (a). This acoustic field is coupled to the wall vibration (b). The
vibratory field of the lateral wall produces sound radiation in the external fluid (c), called
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Figure 1. Vibroacoustic couplings occurring in a clarinet-like instrument.

lateral radiation. The open end of the tube produces sound radiation in front of the
instrument, called frontal radiation (d).

2.2.  

The complexity of the instrument’s body is not taken into account. The system studied
is a thin cylindrical shell characterized by its density rs , its ring natural frequency va , its
length l, its mean radius a, and its thickness h (see Figure 2). The position vector is
r=(r, u, z) and the surfaces S0, S and Sl correspond to the co-ordinate z=0, the lateral
surface of the cylinder (r= a) and the co-ordinate z= l, respectively. The internal domain,
delimited by the surfaces S0, S, Sl, is denoted Di and n is the unit vector normal to the
cylinder in the outward direction. The shell motion is assumed to be described by the
Flügge differential operator L (see reference [28]), which incorporates a model of
structural damping. The shell motion is described by the displacement field X, whose
components u, v, w are the longitudinal, circumferential and radial displacements,
respectively. The shell is assumed to be simply supported, leading to tractable analytical
modal basis.

2.3.  

The instrument produces sound in the air (density r and speed of sound c). The
dissipative effects are taken into account only in the internal fluid, making use of the
complex value c= c0(1− jhf ). The loss factor hf can be obtained for each acoustic mode
(plane modes and higher order modes) making use of the model described in Appendix
A [29]. The acoustic behaviour of the fluid is characterized by the acoustic pressure p(r)
and the particle acoustic velocity v(r). The normal component of v(r), related to a surface
S is denoted vS (r).

2.4.  

The reed, clamped on the mouthpiece of the clarinet, is a complex acoustic and
mechanical source. The acoustic source is characterized by a given harmonic particle

Figure 2. The vibrating cylinder.
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Figure 3. Mouthpiece of the real instrument (a) and the particle velocity distribution on the surface S0 which
represents it (b).

velocity distribution vS0(r) at the surface S0. Because of the complexity of the real
mouthpiece’s shape (see Figure 3(a)), the real velocity distribution, on the surface S0 is not
0. The velocity distribution considered represents this asymmetry, which is at the origin
of the excitation of the first structural modes (bending and ovalling modes). If a uniform
velocity distribution is considered, only breathing modes are excited. Thus, the particle
velocity distribution takes on a negligible value over the section S0, except in the dashed
region of S0 (see Figure 3(b)) where the value is assumed to be equal to 1 ms−1 in this paper.
The reed is also a mechanical source, because of the shocks it creates at the edge of the
mouthpiece. The impulses generated by the reed at each period are represented by a
mechanical forcing function F(r, t), which is reduced in this study to a point force in the
radial direction, and applied at M(ra ). Because of the Poisson summation formula, this
impulse force can be written as an expansion of harmonic terms:

F(r, t)=Fd(r− ra ) s
+a

N=−a

d(2pN−vt)n=Fd(r− ra )
1
2p

s
+a

N=−a

e−Njvtn. (1)

The system is assumed to be linear; thus the response to the impulse excitation can be
obtained by summing the response corresponding to harmonic excitations. For this reason,
in the following, only the harmonic excitation is considered

F(r, t)=
F
2p

d(r− ra) e−jvtn=F0d(r− ra ) e−jvtn, (2)

where the magnitude F0 is set to 1. The point M(ra ) is located at u=0, z= l/10, r= a.
Finally, the characteristics of the two kinds of sources, the particle velocity distribution
vS0(r) and the force F, are expressed in the frequency domain, and the factor e−jvt is omitted.

2.5.  

The coupling between the external fluid domain, De , and the shell vibration leads to the
so-called lateral radiation, which is characterized by external radiation impedances. These
impedances can be simply estimated if the shell is supposed to be connected with two
semi-infinite rigid cylindrical baffles, denoted Be , and corresponding to the surfaces
(r= a, zE 0) and (r= a, ze l), as shown in Figure 4. Sandman [22] has shown that the
baffles have little influence on the radiation impedances, allowing one to describe in a
simple manner the external fluid-loading.

In a similar way, the sound radiation through the open end of the duct, called frontal
radiation, can be taken into account if the tube is flanged (see Figure 5). The frontal
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Figure 4. Lateral radiation.

radiation occurs in the half infinite domain Df , limited by the rigid baffle Bf . With this
configuration, the radiated sound field can easily be calculated in the domain Df , without
changing the kind of inter-modal coupling created by this radiation. The centre of the
surface Sl is denoted rSl.

Two components of sound radiation have been distinguished: the lateral and frontal
sound radiation. As already pointed out, in the real situation, the two acoustic fields are
interfering with each other and the sources which create them are coupled. Considering
artificial baffles leads to uncoupled sound sources, allowing an analytical solution to be
expressed.

2.6.    

The shell displacement field, X(r), and the acoustic pressure, p(r), in the three fluid
domains Di , De and Df , are the solutions of the following problem:

For Di ,

(D+ k2)p(r)=0 for r$Di ,

vS0(r) is assumed to be given for r$S0,

vS (r)= ẇ(r) for r$S,

vSl(r:S−
l )= vSl(r:S+

l ) and p(r:S−
l )= p(r:S+

l ); (3a–d)

Figure 5. Frontal radiation.
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for De ,

(D+ k2)p(r)=0 for r$De ,

vS (r)= ẇ(r) for r$S,

vBe (r)=0 for r$Be ,

Sommerfeld’s conditions for >r>:a; (4a–d)

for Df ,

(D+ k2)p(r)=0 for r$Df ,

vBf (r)=0 for r$Bf ,

vSl(r:S+
l )= vSl(r:S−

l ) and p(r:S+
l )= p(r:S−

l ),

Sommerfeld’s condition for >r:rsl>:a; (5a–d)

for the shell,

rsh(v2
a L+v2)X(r)= [ pe(r)− pi(r)] · n−F(r) for r$S,

simply supported boundary conditions for z=0, l. (6a, b)

3. THEORY

3.1.   

The harmonic motion of the shell, described by the displacement field X, may be
expanded over the in vacuo eigenmodes Fm of the simply supported shell (see Appendix
B for the description of these structural modes):

X= s
m

AmFm . (7)

Inserting equation (7) into equation (6a), and making use of the orthogonality property
of the structural modes Fm ,one gets the generalized equation for the shell motion,

mmAm [−v2 +v2
m (1− jh)]=−Pe

m +Pi
m +Fm , (8)

where h denotes the structural damping factor, mm denotes the modal mass of the shell
mode Fm , whose natural angular frequency is vm . The generalized force

Fm = �F, Fm�S = s
3

i=1

�Fi =Fim�S =F0F3m (ra ), (9)

and the generalized pressure

Pi,e
m = �pi,en, Fm�S = �pi,e=F3m�S , (10)

which appear in the right side of equation (8), are respectively the inner product of the
given force F and the internal and external acoustic pressure over the shell mode
Fm =[F1m F2m F3m ]T. The inner product used for this projection is defined by �f =g�Si =
fSi

f · g* ds. Solving equation (8) requires the internal and external acoustic pressure to be
expressed in terms of the modal amplitudes Am .
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3.2.         

By making use of an appropriate Green function, the classical integral method provides
the expression of the acoustic field inside a cavity with vibrating walls [9]. However, it can
be shown that a new method, called the Separate Modal Expansions method, provides
coupling coefficients (internal radiation impedances), which are more simply expressed
than with the classical integral method. A comparison between coupling terms coming
from these different methods can be found in reference [26]. The Separate Modal
Expansions method, which is used in this paper, leads to the following expression for the
acoustic field inside a cylindrical cavity whose wall vibrations are described by modal
amplitudes Am :

p(r, u, z)= pr
S (r, u, z)+ pr

S0l
(r, u, z), for r$Di , (11)

with

pr
S (r, u, z)= rc s

m=(m,q,s,j)

−jvAm$j k
kq

Jm (kqr)
J'm (kqa)%F3m (u, z), (12)

and

pr
S0l

(r, u, z)= s
a=(m,n,s)

[B+
a ejkmnz +B−

a ejkmn (l− z)]Ca (r, u), (13)

where the wavenumbers kq and kmn are defined by the relationships k2
q = k2 + (qpl)2,

k2
mn = k2 − k2

Wmn
with J'm (kWmna)=0, all indices being described in Appendices B and C. The

two modal expansions, corresponding to the terms pr
S (r, u, z) and pr

S0l
(r, u, z), use the radial

component F3m of the shell eigenmode Fm (see Appendix B) and the well-known
eigenfunctions of the two-dimensional transverse Neumann problem (see Appendix C).
The term pr

S (r, u, z) can be interpreted as the internal radiation of the vibrating walls,
whose motion is described by the modal amplitudes Am , when Dirichlet conditions are
imposed on the surfaces S0 and Sl (see reference [26]). The complementary term pr

S0l
(r, u, z)

corresponds to the radiation from the surfaces S0 and Sl, and the integration constants
B2

a are determined by making use of the acoustic boundary conditions (3b) and (3d). In
order to express these conditions, the axial component of the acoustic velocity v has to
be known. It can be determined, making use of the velocity potential Q which satisfies the
relations v=−9Q and p=−jrvQ, p being the acoustic pressure given by equation (11).
The inner product of the acoustic pressure and the axial velocity over the acoustic mode
Ca can be written as follows:

� p, Ca�S0 =B+
a +B−

a ejkmnl, � p, Ca�Sl =B+
a ejkmnl +B−

a , (14, 15)

�v, Ca�S0 =G0a +
kmn

rck
[B+

a −B−
a ejkmnl], �v, Ca�Sl =Gla +

kmn

rck
[B+

a ejkmnl −B−
a ],

(16, 17)

where the generalized velocities Gia (i=0 or i= l), related to the wall vibrations effect in
the axial generalized velocity �v, Ca�Si , are given by

Gia = s
m

−jvAm

qp/l
kqJ'm (kqa)

�Jm (kqr) sin (mu+ sp/2)=Ca�S6 1
(−1)q

if i=0
if i= l7. (18)
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The inner product �v, Ca�S0 =VS0a
is a given quantity because the particle velocity

distribution vS0(r) is supposed to be known. Consequently, the relationship (16) represents
the boundary condition on the surface S0. The unknown acoustic pressure p(r) on Sl will
be fixed in the next section, by making use of the continuity relation between domains Di

and Df (see equations (3d) and (5c)). Thus, by using the projections Pa = �p, Ca�Sl, the
boundary condition on Sl is given by equation (15). Finally, the amplitudes B2

a are the
solutions of the linear system:

$ejkmnl

1
1

−ejkmnl%$B+
a

B−
a %=$ Pa

rck/kmn [VS0a
−G0a%. (19)

The integration constants B2
a can be split into three terms, which can be interpreted by

making use of other integration constants corresponding to more simple problems. These
problems are labelled by using three letters. The first, second and third letters represent
the condition on the surfaces S0, S and Sl, respectively, and are chosen among N (for
Neumann), D (for Dirichlet), V (for imposed velocity), and P (for imposed pressure). For
example, with this notation, the problem associated to Neumann boundary conditions on
S0, velocity condition on S and Dirichlet boundary conditions on Sl is denoted (NVD).
Each integration constant (B−NVD

a , B+NVD
a ), (B+VND

a , B−VND
a ), (B+NNP

a , B−NNP
a ) correspond to

the solution of the linear system (19) when the right side terms (VS0a
, Pa ), (G0a , Pa ), and

(VS0a
, G0a ) are respectively forced to zero. Thus, the constants B2

a can be written as the sums

B+
a =B+VVP

a =B+NVD
a +B+VND

a +B+NNP
a ,

B−
a =B−VVP

a =B−NVD
a +B−VND

a +B−NNP
a . (20)

Inserting equations (20) into equation (11), one gets the acoustic pressure p(r), leading to
the following expression for the internal generalized pressure, equation (10):

Pi
m =PNVD

m +PVND
m +PNNP

m . (21)

By making use of the internal radiation impedance Zi
mm', which characterized wall radiation

into the cylindrical cavity for the (NVD) problem, the generalized pressure PNVD
m can be

written as (see Appendix D)

PNVD
m =+jv s

m'

Zi
mm'Am'. (22)

The other generalized pressures PVND
m and PNNP

m depend only on the given coefficients VS0a

and on the unknown modal amplitude Pa , and are given by

PVND
m = rc s

m

VS0a
Tma , PNNP

m = s
m

PaHma , (23, 24)

where the expressions for the impedance Hma and the 0 function Tma are given in
Appendix D.

3.3. -            



Upon making use of the Green function GDf (r, r0), which satisfies Neumann boundary
conditions on the surface (Sl +Bf ) [30],

GDf (r, r0)= ejk>r− rSl>/2p>r− rSl>, (25)
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the acoustic pressure in the frontal domain (Df ) can be expressed as

p(r)=−jrv gSl

GDf (r, r0)vSl(r0) ds0, r$Df . (26)

Using the continuity relations equations (3d) and (5c) leads to the following impedance-like
relationship [31]:

Pa = � pSl=Ca�Sl = s
a'

Zr
aa'�vSl=Ca'�Sl, (27)

where the frontal radiation impedances Zr
aa' describe the inter-modal coupling which is

induced by sound radiation from the open end of the duct. The expressions for Zr
aa' are

given in Appendix E. Inserting equation (27) into equation (17), one gets

Pa = s
a'

Zr
aa'0Gla' +

kmn

rck
[B+

a' ejkmnl −B−
a' ]1= s

a'

Zr
aa'(VNVD

a' +VVND
a' +VNNP

a' ), (28, 29)

where the axial velocities VNVD
a' , VVND

a' , VNNP
a' correspond to the (NVD), (VND) and (NND)

problems. The axial velocity VNVD
a depends only on the modal amplitudes Am :

VNVD
a =jv s

q,j

AmHma , with m=(m, q, s, j), (30)

where the coupling term Hma is given in Appendix D. The other generalized velocities VVND
a

and VNNP
a can be expressed as

VVND
a = JaVS0a

, VNNP
a =(Ka /rc)Pa , (31, 32)

the transfer functions Ja and Ka being given in Appendix E.

3.4.         

By making use of the Green function GDe (r, r0) which is the solution for the exterior
Neumann boundary value problem [24, 25, 30],

GDe (r, r0)=
−1
4p2 s

a

m=0

om cos (mu− u0) g
+a

−a

H(1)
m (kra)

krH(1)
m '(kra)

e jkz (z− z0) dkz , (33)

where kr =(k2 − k2
z )1/2, om is the Neumann factor, H(1)

m and H(1)
m ' denote the mth order

Hankel function and its derivative respectively, the radiated pressure into the external
domain De can be expressed as

p(r)=−jrv gS

ẇ(r0)GDe (r, r0) dS0. (34)

Using the modal expansion (7), one can write the generalized external pressure, equation
(10), as

Pe
m =−jv s

m'

Ze
mm'Am , (35)

where the external radiation impedances Ze
mm' are given in Appendix F.
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3.5.   : 

The unknown modal amplitudes Am and Pa satisfy the two equations governing the
problem, equations (8) and (29). The first one, associated to equations (9) and (21)–(24)
describes the shell motion under fluid and mechanical loadings. The second one, associated
to equations (30)–(32), describes the modal coupling due to the acoustic radiation from
the open end of the duct. By making use of the matricial notations defined in Appendix
G, the governing equations can be written as follows:

$Mm −jv(Zi
m +Ze

m )
−jvZr

m · Ht
m

−Hm

1− (rc)−1Zr
m · Km% · $Am

Pm%=$10 rcTm

Zr
m · Jm% · $Fm

Vm%. (36)

4. NUMERICAL RESULTS

Solving equation (36) requires the computation of three kinds of impedance matrices
Zi

m , Ze
m and Zr

m (see Appendix G) which characterize the three couplings: internal and
external radiation coupling, and inter-modal coupling due to sound radiation through the
open end of the duct. The calculation of the internal radiation impedances requires the
estimation of the series given by equation (D2). Numerical tests have shown that
satisfactory results can be obtained if the truncation adopted takes into account the 15
first terms of the series. The two other kinds of impedances require intensive calculations.
Upon making use of impedance matrices Zi

m , Ze
m and Zr

m , the direct inversion of the coupled
system (36) provides the unknown vectors Pm and Am .

4.1.  

In this section, the sound power radiated from the lateral surface into the external
domain,

PS =
1
2 gS

Re [ pe(r)ẇ*(r)] dS=
v2

2
s
mm'

Re (AmA*m' Ze
mm'), (37)

is used as a global indicator of the sound level produced by wall vibrations. This
vibroacoustic indicator is investigated separately for the two kinds of excitation and is

Figure 6. Sound power level, radiated from the lateral surface S for a mechanical (a) and an acoustical (b)
excitation (referenced to 10−12 W).
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shown in Figures 6(a) and (b). For the mechanical excitation, the magnitude of the force
is set to 1 Newton,

F0 =1 N and vS0(r)0 0, r$S0, (38)

and an unitary acoustic source defined by (see Figure 3(b))

F0 =0 N, and 6vS0(r)=1 ms−1

vS0(r)=0
if −ua Q uQ ua and r0 Q rQ a
otherwise 7, (39)

the geometrical parameters (defining the dashed part of Sl) being defined by r0 =0·9a and
ua = p/3. For the steel shell which is studied (length l=0·5 m, radius a=0·01425 m,
thickness h=0·05 m), the structural modes whose natural in vacuo frequencies are in the
range 0–10 kHz are taken into account. This corresponds to the first 43 mechanical modes,
and involves the circumferential indexes 0EmE 4. The structural damping factor is set
to h=10−2 as given in reference [18] for a steel shell.

For a mechanical excitation, PS indicates a strong acoustic power radiated for each shell
resonance. The acoustic resonances of the internal column of fluid do not lead to
particularly significant values of PS . For acoustic excitation, significant peaks in PS appear
for the first acoustic internal resonances (plane modes resonances), for the first higher order
acoustic resonances (up to the first cut-off frequency (equal to 7060 Hz)), and for bending
modes of the shell (denoted B on Figure 6(b)). The resolution of the coupled system also
provides the coefficients of the modal expansion of the acoustic pressure on the section
Sl, allowing one to calculate the sound power radiated across this surface:

PS =
1
2 gSl

Re [ p(r)v*Sl(r)] dS=
1
2

s
aa'

Re (VaV*a' Zr
aa'). (40)

As expected, PS takes on high values for frequencies which are near to odd harmonics
of the fundamental frequency f= c/4l (plane modes resonances). Up to the first cut-off
frequency (7060 Hz), the resonances of the higher order mode m=1, n=0 are added to
those of plane modes. The indicator PSl can be calculated for a vibrating or a rigid tube,

Figure 7. Sound power level, radiated from the surface Sl for acoustic excitation.
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leading to the same curves on Figure 7, according to its scale. The small discrepancies
between the two results is exhibited by making use of the indicator DPSl defined in the
next section. Note that the acoustic power emitted from the vibrations of the lateral walls
is much lower than the acoustic power radiated at the output of the duct (see Figures 6(b)
and 7).

4.2.             

  

Because the sound power PSl radiated from the open end of the duct is a good indicator
of what could be heard by the musician, interest in this section is in comparing this
indicator when wall vibrations are taken into account (sound power level PSl1) and when
the tube is rigid (sound power level PSl2). For the computation of the sound power level
PSl2, the impedance matrices Zi

m and Ze
m in equation (36) are forced to zero. The difference

between the two results,

DPSl = =PSl1 −PSl2=, (41)

is shown in Figure 8.
Each acoustic resonance frequency is shifted and damped because of the interaction with

the shell. The algebraic difference DPSl, which quantifies the discrepancies between the
sound power level radiated by a vibrating and a rigid tube, leads to a local maximum at
each resonance frequency. Thus, each peak of the indicator DPSl, shows a frequency shift.
This phenomena is found to be particularly significant near the first cut-off frequency, thus
concerning the higher order modes associated to m=1.

4.3.    

In order to quantify the frequency shifts mentioned in the previous section, corrected
values of the frontal radiation impedance, taking into account the wall vibrations effects,
are derived. Upon neglecting the inter-modal couplings, due to the internal and external
radiation of the shell, and considering only the interaction between one structural mode
Fm and one acoustic mode Ca , the linear system (36) reduces to a 2×2 system which is
singular when

Figure 8. Difference between the sound power level, radiated from the open end of the tube, calculated with
and without wall vibrations.
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Figure 9. Modulus of CA
ma , for a=(0, 0, 1) m=(0, 1, 1, 1) (a), and for a=(1, 0, 1), m=(1, 5,1,1) (b).

−mmv
2 − jv(Zi

mm +Ze
mm )+mmv

2
m =jvCM

ma , (42)

or when

1− (Zr
aa /rc)(kmn /k)j tan (kmnl)=CA

ma , (43)

where the terms CM
ma and CA

ma are defined by

CM
ma =H2

maZr
aa /[1− (Zr

aa /rc)(kmn /k)j tan (kmnl)], (44)

CA
ma =jvH2

maZr
aa /[−mmv

2 − jv(Zi
mm +Ze

mm )+mmv
2
m ], (45)

the coupling coefficient Hma being given by equation (D5). The solutions of equations (42)
and (43) are the coupled resonance frequencies. When the terms CM

ma and CA
ma are forced

to zero, solutions of equations (42) and (43) correspond to the resonance frequencies of
the fluid-loaded shell (which do not takes into account the frontal radiation) and to the
acoustic resonance frequencies of the internal column of fluid (bounded by a rigid wall)
taking into account the end impedance Zr

aa , respectively. The term CA
ma allows one to take

into account the effect of the three kinds of coupling upon the acoustic resonance
frequencies. Equation (43) shows that the wall vibrations effect can be taken into account
if the frontal radiation impedance Zr

aa takes on the corrected value

Z� r
aa =Zr

aa · CA
ma /(1−CA

ma )2Zr
aa · (1+CA

ma ), (46)

the coupled acoustic resonance frequencies being the solutions of

1− (Z� r
aa /rc)(kmn /k)j tan (kmnl)=0. (47)

The variation of CA
ma’s modulus versus frequency is shown in Figures 9(a) and (b). The first

one (Figure 9(a)) concerns the interaction of the plane wave modes (m=0, n=0) with
the first breathing shell mode (m=0, q=1). The second one (Figure 9(b)) is related to
the interaction between the first higher order acoustical mode (m=1, n=0) and the
bending shell mode of axial index q=5.

5. CONCLUSION

In order to quantify the wall vibrations effect of the body of a wind music instrument
on tone, a model for the vibroacoustic behaviour of an ersatz clarinet has been presented.
Three kinds of coupling have been identified and included in the model: the internal and
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external radiation couplings and the inter-modal acoustic coupling created by the radiation
from the open end of the instrument. The radiated sound power from the lateral wall is
calculated for mechanical and acoustical excitations and is found to be much lower than
the sound power radiated from the open end. The difference between the sound power
radiated from the open end for a vibrating tube and a rigid one are exhibited and
interpreted in terms of acoustic resonance frequency shifts due to wall vibrations. This
effect has been shown to be significant near the first cut-off frequency of the cylindrical
tube. Corrected values for the frontal radiation impedance of the tube, taking into account
the wall vibrations effect, are given and quantify these frequency shifts, related to small
tone changes.
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APPENDIX A: COMPLEX SPEED OF SOUND TAKING INTO ACCOUNT THE
INTERNAL FLUID LOSSES

The dissipative phenomena (viscous and thermal losses) inside the waveguide can be
taken into account by considering the complex speed of sound c= c0(1− jhf ), which can
be obtained for each acoustic mode as follows [29]. The Helmholtz equation
(D+ k2)p(r)=0, with k=v/c0 in an infinite rigid circular tube, associated to the mixed
condition on the wall

1p
1r

(r= a)=−jkbp, (A1)

where the wall admittance describing the loss effects, have the form

b(v)= (jk)1/2$01−
k2

Wmn
−m2/a2

k2 1zl'v +(g−1)zlh% (A2)

(l'v and lh being viscous and thermal characteristic length, respectively, and g being the
specific heat ratio), leads to the following expression for the axial acoustic wavenumber,
associated to the circumferential index m and the radial index n,

k2
mn = k2 − k2

Wmn
+X, (A3)

with

X=
1+j
z2

2
a

k3/2$01−
k2

Wmn
−m2/a2

k2 1zl'v +(g−1)zlh% 1
1− g2

mn
, (A4)

where kWmn and gmn are given in Appendix B. Note that the term X is equal to zero when
the fluid is lossless. The comparison of equation (A3), in which k=v/c0, with the relation
kmn =(v/c)2 − kWmn , allows one to characterize the complex speed c, taking into account
the loss phenomena.
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APPENDIX B: STRUCTURAL MODES

The modes of a simply supported shell can be written as [28]

Fm = &F1m

F2m

F3m'= &Um cos (qpz/l) sin (mu+ sp/2)
Vm sin (qpz/l) cos (mu+ sp/2)

sin (qpz/l) sin (mu+ sp/2) ', (B1)

where the subscript m denotes the four indexes:

m=(m, q, s, j), (B2)

in which m denotes the circumferential index (me 0), q denotes the axial index (qe 1),
s is the symmetry index (s=0, 1), and j is the mode type index ( j=1 for bending modes,
j=2 for extension/compression modes, j=3 for twisting modes). The modal coefficients
Um , Vm and the natural angular frequency vm can be found by solving a 3×3 linear system
[28], obtained by inserting equation (B1) into the homogeneous equation of the shell
motion.

APPENDIX C: ACOUSTICAL MODES

The solutions of the Neumann two-dimensional transverse problem are written as

Ca =Jm (kWmnr) sin (mu+ sp/2)/La , (C1)

with

L2
a =(pa2/om )(1− g2

mn )J2
m (kWmna) (C2)

and

g2
mn =6 0

m2/(kWmna)2

m=0
mq 07, (C3)

and are associated to the eigenwavenumber kmn =(k2 − k2
Wmn

)1/2, (kWmna) being the successive
zeros of J'm . The parameter a denotes a triplet of integers,

a=(m, n, s), (C4)

where m is the circumferential index (me 0), n the radial index (ne 0) and s the symmetry
index (s=0, 1).

APPENDIX D: INTERNAL RADIATION IMPEDANCES

The internal radiation impedances Zi
mm', equation (22), describe the interactions between

the shell and the internal fluid when Neumann and Dirichlet boundary conditions are
applied on S0 and Sl, respectively. They can be written as [16]

Zi
mm' = dmm'dss'(Zc

mm' + dmm'Zd
mm ), (D1)

where m=(m, q, s, j) and m'= (m', q', s', j'), and where dmm' denotes the Kronecker
symbol. The cross impedance, Zc

mm', and the complementary term, Zd
mm , that one needs to

obtain the direct impedance Zi
mm =Zc

mm +Zd
mm , are given by

Zc
mm'

rc2pal
=−j

2
om

a
l

ka
qpa
l

q'pa
l

s
n

tan (kmnl)
kmna[1− g2

mn ][(kmna)2 − (qpa/l)2][(kmna)2 − (q'pa/l)2]
,

(D2)
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Zd
mm

rc2pal
=

−j
2om

k
kq

Jm (kqa)
J'm (kqa)

. (D3)

The other coefficients, Tma and Hma , describing the internal radiation of the shell and defined
by equations (23) and (24), are given by

Tma =2j$ p

om (1− g2
mn )%

1/2 kqp/l
kmn

tan (kmnl)
[k2

mn −(qp/l)2]
, (D4)

Hma =−4$ p

om (1− g2
mn )%

1/2 qp/l
[k2

mn −(qp/l)2]
1

cos kmnl 6sin2 (kmnl/2)
cos2 (kmnl/2)

q even
q odd7. (D5)

APPENDIX E: FRONTAL RADIATION IMPEDANCES

The frontal radiation impedances, equation (27), characterize the inter-modal coupling
caused by sound radiation from the open end Sl of the duct, and are given by [31]

Zr
aa'

rc
=−dss'dmm'j g

a

0

t(t2 −1)(−1/2)Dmn (t)Dmn'(t) dt, (E1)

where

Dmn (t)= k2 g
a

0

Jm (tkr)Jm (kmnr)r dr, (E2)

a=(m, n, s), a'= (m', n', s'). (E3)

The other coupling coefficients, Ja and Ka involved in the frontal radial equations (31) and
(32) are written as:

Ja =1/cos (kmnl), Ka =(kmn /k)j tan (kmnl). (E4, E5)

APPENDIX F: EXTERNAL RADIATION IMPEDANCES

The external radiation impedances, Ze
mm', describe the interaction between the shell and

the external fluid and can be written as [23–25]

Ze
mm' = jrc

a
om g

+a

−a

k
kr

H1
m (kra)

H1
m'(kra)

F
 3m (kz )F
 *3m'(kz ) dkz , (F1)

with

kr =(k2 − k2
z )1/2, with 0E arg(kr )E p/2, (F2)

and

F
 3m (kz)=g
l

0

sin (qpz/l) e−jkzz dz. (F3)
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After some calculations, the external radiation impedance is expressed in the numerically
tractable form

Ze
mm'

rc2pal
=

j4qq'p
om (kl)3 g

+a

0

Hm (ka(1− u2)1/2)
H'm (ka(1− u2)1/2)

Fqq'(u)
[u2 − (qp/kl)2][u2 − (q'p/kl)2][1− u2]1/2 du,

(F4)

where

Fqq'(u)= 8cos2 (kul/2)
sin2 (kul/2)

0

if q,
if q,

if q(q'),

q' odd,
q' even

q'(q), even, odd9. (F5)

APPENDIX G: MATRIX NOTATIONS

For the shell studied (see section 4.1), the resonance frequencies of the
extension/compression and twisting modes ( j=2, 3) have high values compared to those
of bending modes ( j=1). Thus, only bending modes are taken into account. The
mechanical and acoustic excitation sources are symetrical with respect to the plane (x0z).
Thus, the vibroacoustic responses are also symmetrical, implying s=1. In the following,
the indexes s and j are set to 1. The vectors

Am = &A(m,1,s,j)
···

A(m,Q,s,j)', Pm = &P(m,1,s)
···

P(m,N,s)', (G1)

describe the unknown modal amplitudes Am =A(m,q,s,j) and Pa =P(m,n,s) for a given
circumferential index m and axial mechanical expansion and for the radial acoustic
expansion truncated to Q and N, respectively. The inner products

Fm = &F(m,1,s,j)
···

F(m,Q,s,j)', Vm = &VS0(m,1,s)
···

VS0(m,N,s)' (G2)

describe the excitation sources. The three kinds of radiation impedances Zi
mm', Ze

mm and Zr
aa'

do not depend on the s and j indexes. Thus, one defines

Zi,e
m = &Z

i,e
(m,1,s,j),(m,1,s,j)

···
Zi,e

(m,Q,s,j),(m,1,s,j)

· · ·

· · ·

Zi,e
(m1,s,,j),(m,Q,s,j)

···
Zi,e

(m,Q,s,j),(m,Q,s,j)', (G3)

Zv
m = &Z

r
(m,1,s),(m,1,s)

···
Zr

(m,N,s),(m,1,s)

· · ·

· · ·

Zr
(m,1,s),(m,N,s)

···
Zr

(m,N,s),(m,N,s)'. (G4)

Upon making use of the relations (8) and (29) the other coupling matrices are defined by:

Hm = &H(m,1,s,j),(m,1,s)
···

H(m,Q,s,j),(m,1,s)

· · ·

· · ·

H(m,1,s,j),(m,N,s)
···

H(m,Q,s,j),(m,N,s)', Jm = &J(m,1,s,j)

(0)

···

(0)

J(m,N,s,j)', (G5)
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Tm = &T(m,1,s,j),(m,1,s)
···

T(m,Q,s,j),(m,1,s)

· · ·

· · ·

T(m,1,s,j),(m,N,s)
···

T(m,Q,s,j),(m,N,s)', Km = &K(m,1,s,j)

(0)

···

(0)

K(m,N,s,j)', (G6)

Mm = &m(m,1,s,j)(−v2 +v2
(m,1,s,j)(1− jh))

(0)

···

(0)

m(m,Q,s,j)(−v2 +v2
(m,Q,s,j)(1− jh))'. (G7)


